Math 564: Advance Analysis 1
Lecture 17
Iutinite peoducts of measune spaces. We alceady discessed poclucts of two measure ipnces, hace we cac latine tinite pooducts of measure speces bs cicluction or just repect the wonstraction/argumenats we did but tor a finile product. What about intinite products?

Lit I be an index sot (e.g. $I:=\mathbb{N}$ bat also $I:=\mathbb{R}$). Tor each ieI, let $\left(X_{i}, B_{i}, Y_{i}\right)$ be measwe spacer. liesfls, let $X:=\prod_{i \in 1} X_{i}$, and let $\otimes_{i \in I} \in S$ denote the σ-algetic generatid by cylinders, i.e. sets of the ${ }^{i \in I}$ form

$$
\left[\left(B_{i}\right)_{i \in I_{0}}\right]:=\prod_{i \in I_{0}} B_{i} \times \prod_{j \in I V_{0}} X_{j}
$$

Wher $I_{0} \leq I$ is tinite, $B_{i} \in B_{i} \forall i \in I_{0}$.
We woald like to get a measare μ on $\bigotimes_{i \in I} B_{i}$ s.t.

$$
\mu\left(\left[\left(B_{i}\right)_{i \in I_{0}}\right]\right)=\prod_{i \in I_{0}} \mu_{i}\left(B_{i}\right) \times \prod_{j \in I I_{0}} \mu_{j}\left(x_{j}\right)
$$

tor each usliader $\left[\left(B_{i}\right)_{i \in I_{0}}\right]$. Ficatly, we want this intivite pochuct to be well-detined. Also, we don't want it to be ∞ or θ to get as interesting measune. In pasticalar, we wacd all but timitels may measures $\mu_{i}\left(X_{i}\right)$ to be finite. To ensune this well-altined we ouly wasicar probabilits , paces.
So assuming $\mathscr{}\left(x_{i}\right)=1 \quad \forall$ i\&I, we waut a neasue:

$$
\mu\left(\left[\left(B_{i}\right)_{i \in I_{0}}\right]\right)=\prod_{i \in I_{0}} \mu_{i}\left(B_{i}\right)
$$

Let A chonote the wlyeber generated by cylinders, which is just the collection of finite disjoint unions of agliaders.
Use $(*)$ do refine a finitely additive measure y on t. Its well-detivechess and hence also finite additivity is sown as usual via taking refinements of partitions.
So now g is a finitely additive measure on θ, so ifs ctbly sup additive, i.e. if $A=\bigcup_{n \in W} A_{n}$ where ' $A, A n \in \mathcal{A}$, then

$$
\mu(A) \geqslant \sum_{n \in \mathbb{N}} \mu\left(A_{n}\right)
$$

Theorem (kakutari 1943). μ is also otly inbadditive. is parficake, by Carathéodoy, r admits an extecsion to a measure on $\otimes B_{i}$. poobabilits

We will prove this in the blowing special case:
Prop. For $I:=\mathbb{N}$ and each $\left(X_{i}, B_{i}, \mu_{i}\right)$ being a standard prob. space, i.e. X_{i} is $P_{0}\left(i s h\right.$ and $B_{i}=\beta\left(x_{i}\right)$.
Proof. By the Bone Isomorphism theoren, we man g assume X_{i} is a conpact Polish space (eg. $\left.2^{\mathbb{N}},[0,1\},\{0\} \cup\left\{\frac{1}{n}: n \in \mathbb{N}^{+}\right\}\right)$.
To show (hat x defined above on the algebra to gene cited by vylinders is uubadclitive, it's enough L let $A=\bigcup_{n \in a n} A_{n}$ a disjoint union of cylinders, chare A itself is a glow $A:=\left[\left(B_{i}\right)_{i<N}\right]$. Now we use the tightum of the V_{i} to replace each B_{i} with a compact $B_{i}^{\prime} \leq B_{i}$ so $A^{\prime}:=\left\{\left(B_{i}^{\prime}\right)_{i<N}\right\}$ is compact by Tychonotf's Theorem and $\mu(A) \approx_{\varepsilon / 2} \mu\left(A^{\prime}\right)$. Similarly, using the regularity of each μ_{i}, we can replace each cylinder A_{n} with an open cylinder $\tilde{A}_{n} \geqslant A_{n}$ with $\mu\left(\tilde{A}_{u}\right) \tilde{\varepsilon}_{\varphi} / J_{i n}\left(A_{n}\right)$,
so $\left\{\tilde{A}_{n}\right\}_{n \in \mathbb{N}}$ is an open cover of the co-pact set A^{\prime}, hasce aldnits a finite abcover $\left\{\tilde{A}_{0}, \hat{A}_{1}, \ldots, \tilde{A}_{k}\right\}$, shich shous tht

$$
\mu(A) \approx_{\varepsilon_{/ 2}} \mu\left(A^{\prime}\right) \leqslant \sum_{i=0}^{k} \mu\left(\tilde{A}_{i}\right) \approx_{2 / 2} \sum_{i=0}^{k} \mu\left(A_{i}\right) .
$$

Ditfecentiation of measures.
Given two measures f and v an the sane measurable space (X, B), ne would like to welerstand thow the welate to each other. We already cletined the notion of abrolate roatiunith $\mathcal{H} \ll \nu$, ice. for all $B \in B, \nabla(B)=0 \Rightarrow \mu(B)=0$. We also recall It
 $\exists \delta>0$ s.t. if $\nu(B) \leq \delta$ then $N(B) \leq \varepsilon$, shich jastifios the term absolate continuity.

The oppasite ation to absolate watinuity is orthagonalidy.
Def. We say hat μ and ν are oithagonal, clenoded $\mu \perp \nu$, if $x=X_{\mu} L X_{\nu}$ s.t. $\quad J\left(X_{\nu}\right)=0$ and $D\left(x_{\mu}\right)=0$.
If this is the case, then it is easg to check tht this lecouposition is unicue up sefs the we both g and 0 null, i.s if $X=X_{\mu}^{\prime} U^{\prime} X_{\nu}^{\prime}$ is another such clecomp. Then $X_{\mu} \Delta X_{y}^{\prime}$ al $X_{v} \Delta X_{y}^{\prime}$ are woll wet both mecsines.

Exauples, (a) A pointunass δ_{0} at 0 is orthojohal th the lebesgue mecsure, with des-posithos $\mathbb{R}=\{0\} L(\mathbb{R} \backslash\{0\})$.
Conseghently, any ctbl positive linecr combination of dicac mecsures is orthojoial to he Lebergee meascre.
(b) Lat μ_{p} be the Becholli (p) neasue on $2^{\mathbb{N}}$. Let $h: 2^{\mathbb{N}} \underset{\rightarrow}{\rightarrow} C$ be the canosical honeonorphism trom $2^{\text {NN }}$ to the stacdesd $\frac{1}{3}$ cantor set, i.e. $h(x):>\sum_{n \in \mathbb{N}} 3^{-n} \cdot 2 \cdot x(n)$. Let $\nu_{p}:=h_{*} \mu_{p}$.
$\lambda(c)=0$ but $\nu_{p}(c)=1$ wile $\nu_{p}(\mathbb{R} \backslash C)=0$. So $v_{p} \perp \lambda$ and the deconposition ir $C U(\mathbb{R} \backslash C)$.
(c) For a Exect masive μ, let $X=X_{0} \cup X_{1}$ al let $f_{i}: X \rightarrow[0, \alpha]$ be ang uasurable fuactions $f_{i}=f_{i}-\mathbb{1}_{x_{i}}$.
Then the mewnes $f_{f_{0}} d g_{f_{1}}$ are orthogonal with $X=X_{0} L X X_{1}$ being the decopposition.

Lebesgue de omposition therrem. For ang two σ-finite neasices $r, 0$ a a meassrable qace $(x, B), X:=X_{1} \cup X_{0}$ s.t. $\left.\left.\gamma\right|_{x_{1}} \ll \nu\right|_{x_{1}}$ acd $\left.\left.J\right|_{x_{0}} \perp v\right|_{x_{0}}$.
Det. Measines of $d v$ on the same mearsuable space (X, B) are called eqnivaleat, denoted $\mu \sim \nu$, if $\mu \ll \nu$ and $\nu \ll \mu$. Dhis mecus tht ' μ and ν have the save will sets.

From ubesghe dromp. them, we get:
Cor. For any tuo o-firite mecines $\mu \ell \nu, \exists X=X_{0} \cup X_{1}$ sach ut $\left.\left.\mu\right|_{x_{0}} \perp v\right|_{x_{0}}$ al $\left.\left.j\right|_{x_{1}} \sim v\right|_{x_{1}}$.
Pcoot.
To present the proot of lebesgle docomporition vicely, also for
other purposes later, we would lila to be able to subtract one neasore from the other, which yields sighed measures.

Def. A function $5: B \rightarrow(-\infty, \infty]$ on a σ-algebra B on X is called a signed weaswe if
(i) $\mu(\not \varnothing)=0$
(ii) $\mu\left(\operatorname{un}_{n \in \mathbb{N}} B_{n}\right)=\sum_{u \in \mathbb{N}} \mu\left(B_{n}\right)$
(iii) μ doesn't attain both $-\infty$ al ∞ values.

Examples. (a) All meshes are sighed measures.
(b) If μ, ν ane neusares where at least one is finite, then $\mathcal{J}-\nu$ is a sighed weashe.
(c) Let $f \in L^{\prime}(X, \mu)$, then $\mu_{f}(B):=\int f d \mu$ is a finite signed measure. Note $K_{A} \mu_{f}^{\mu}=\mu_{f^{+}}-\mu_{f^{-}}, B$ like in (b).

The following shows ht (b) contains all examples of signed measures.

Jordan Devo~position Theorem, Every signed measure is of the 6 p m $\rho-D$, where $\mu, 0$ are measles one of which i) finite.

